Resolution Chart Comparison (JPEG and Raw)

Images on this page are of our standard resolution chart which provides for measurement of resolution up to 4000 LPH (Lines Per Picture Height). A value of 20 equates to 2000 lines per picture height. For each camera we use the relevant prime lens (the same one we use for all the other tests in a particular review). The chart is shot at a full range of apertures and the sharpest image selected. Studio light, cameras set to aperture priority (optimum aperture selected), image parameters default. Exposure compensation set to deliver approximately 80% luminance in the white areas.

What we want to show here is how well the camera is able to resolve the detail in our standard test chart compared to the theoretical maximum resolution of the sensor, which for the charts we shoot is easy to work out - it's simply the number of vertical pixels (the chart shows the number of single lines per picture height, the theoretical limit is 1 line per pixel). Beyond this limit (which when talking about line pairs is usually referred to as the Nyquist frequency) the sensor cannot faithfully record image detail and aliasing occurs.

This limit is rarely attained, because the majority of sensors are fitted with anti-aliasing filters. Anti-aliasing filters are designed to reduce unpleasant moiré effects, but in doing so, they also reduce resolution (the relative strength and quality of these filters varies from camera to camera). In theory though, a sensor without an AA filter, when coupled with a 'perfect' lens, will deliver resolution equal to its Nyquist limit. Therefore, even though it may be effectively unattainable with normal equipment in normal shooting situations, an understanding of a sensor's theoretical limit provides a useful benchmark for best possible performance. Nyquist is indicated in these crops with a red line.

On this page we're looking at both JPEG and Raw resolution. For a (more) level playing field we convert the latter using Adobe Camera Raw. Because Adobe Camera Raw applies different levels of sharpening to different cameras (this confirmed) we use the following workflow for these conversions:

  • Load Raw file into Adobe Camera Raw (Auto mode disabled)
  • Set Sharpness to 0 (all other settings default)
  • Open file to Photoshop
  • Apply a Unsharp mask tuned to the camera, here 170%, Radius 0.4, Threshold 0
  • Make 100% crops and save the original file at JPEG quality 11 for download
JPEG (4352 x 3264) 2.0MB JPEG (4352 x 3264) 5.3MB

Vertical resolution


Horizontal resolution


With a high quality lens (such as the Nikkor 50mm F1.4 that we use for our studio tests) the D3200's 24MP pixel count results in high levels of detail. However, the out-of-camera JPEGs, while clean of artifacts, are a little soft and and only resolve accurately up to approximately 3000 lp/ph which is less than we would expect from a camera with a 24MP sensor.

Converting your raw files and applying a customized unsharp mask (170%, 0.4 radius in our case) will get you a significant amount of additional detail. In our examples, here, there is some detail (albeit not 'true' almost up to the Nyquist limit of 4000lp/ph, which is the theoretical limit of the D3200's sensor resolution. You pay for it with some moiré patterning but in real-life images this is much less of an issue than it might appear from our test-chart. As always, if detail resolution is your priority, raw files provide a much better starting point than out-of-camera camera JPEGs.