Previous page Next page


Images on this page are of our standard resolution chart which provides for measurement of resolution up to 4000 LPH (Lines Per Picture Height). A value of 20 equates to 2000 lines per picture height. For each camera we use the relevant prime lens (the same one we use for all the other tests in a particular review). The chart is shot at a full range of apertures and the sharpest image selected. Studio light, cameras set to aperture priority (optimum aperture selected), image parameters default. Exposure compensation set to deliver approximately 80% luminance in the white areas.

What we want to show here is how well the camera is able to resolve the detail in our standard test chart compared to the theoretical maximum resolution of the sensor, which for the charts we shoot is easy to work out - it's simply the number of vertical pixels (the chart shows the number of single lines per picture height, the theoretical limit is 1 line per pixel). Beyond this limit (when talking about line pairs usually referred to as the Nyquist frequency) the sensor cannot faithfully record image detail and aliasing occurs.

This limit is rarely attained, because the majority of sensors are fitted with anti-aliasing filters. Anti-aliasing filters are designed to reduce unpleasant moiré effects, but in doing so, they also reduce resolution (the relative strength and quality of these filters varies from camera to camera). In theory though, a sensor without an AA filter, when coupled with a 'perfect' lens, will deliver resolution equal to its Nyquist limit. Therefore, even though it may be effectively unattainable with normal equipment in normal shooting situations, an understanding of a sensor's theoretical limit provides a useful benchmark for best possible performance. Nyquist is indicated in these crops with a red line.

On this page we're looking at both JPEG and Raw resolution. For a (more) level playing field we convert the latter using Adobe Camera Raw. Because Adobe Camera Raw applies different levels of sharpening to different cameras (this confirmed) we use the following workflow for these conversions:

  • Load RAW file into Adobe Camera RAW (Auto mode disabled)
  • Set Sharpness to 0 (all other settings default)
  • Open file to Photoshop
  • Apply a Unsharp mask tuned to the camera, in this case 100%, Radius 0.6, Threshold 0
  • Save as a TIFF (for cropping) and as a JPEG quality 11 for download
JPEG (4912 x 3264) 3.8MB RAW (4912 x 3264) 3.7MB

Vertical resolution


Horizontal resolution


The NEX-5N's JPEG engine is capable of pulling genuine detail out of the chart up to around 2800 lp/ph, which puts it on almost exactly the same level as the Panasonic Lumix DMC-G3 which has a very similar number of vertical pixels. In RAW mode the 5N doesn't deliver much more 'true' detail but moiré patterning is very apparent from around 2800 lp/ph.

Looking at the impressive JPEG results, especially, the 5N's sensor appears to have an unusually light AA filter. Normally, in JPEG files we'd expect to see a detail-less blur from Nyquist onwards, but here, some lines survive beyond the sensor's Nyquist limit (although this is not 'true' detail). This is common in well-processed RAW files, but unusual in JPEGs.

Previous page Next page
I own it
I want it
I had it
Discuss in the forums


Total comments: 2

After read two tons of reviews, and similar videos on youtube, and finnaly prove for myself the excelent overal quality of this camera ,clearly this is the best choice of compact system camera to date. Period. Put an 35mm or 50mm f1.4 on it, and you have the power only see in +2000$ BigBoys DSRls.

1 upvote

Thats right!
Macro performance using the 18-55mm kit lens is excellent, with the NEX-5N quickly finding a focus point and setting a shallow depth of field, throwing everything outside of this tight area into blur and giving our backgrounds an attractive bokeh effect.

Total comments: 2