Fairground rides: 1/250 sec. @ f/16 Night street scene: 1/200 sec. @ f/16 Interior by candlelight: 1/60 sec. @ f/16 Landscapes by full moon: 1/2 sec. @ f/16

Direct link |
Posted on Feb 25, 2014 at 22:55 UTC
as 176th comment
| 6 replies

Regarding the excellent demo of diffraction's impact at various f-stops, on page 25 of this review, where is the photo showing what could have been accomplished using Photoshop ACR sharpening against an f/4 RAW file?

I would very much like to compare sharpening of the f/4 RAW file to sharpening of the f/22 RAW file. Surely, a silk purse made from silk would be more attractive than a silk purse made from a pig's ear.

Link to page 25 of this review: http://www.dpreview.com/reviews/nikon-d800-d800e/25

Mike

Direct link |
Posted on Oct 19, 2013 at 12:13 UTC
as 10th comment

Humboldt Jim: Can we assume that a 1" sensor system can be stopped down to ƒ16, or even 22 without diffraction problems?

Using the example I've given above, if you're willing to assume that no one will view your prints at distances less than 20 inches (instead of 10 inches), you can double the calculated f-Number, stopping down to f/12.84 - delivering an effective 2.5 lp/mm at 20 inches that will appear every bit as detailed as a 5 lp/mm print at 10 inches.

Please note that there are only two variables in the formula for calculating the f-Number at which diffraction will begin to inhibit a desired print resolution (expressed in lp/mm for a 10-inch viewing distance): Enlargement factor and desired print resolution at a given viewing distance.

Somehow, discussions of resolution (or "sharpness") almost always neglect these critical variables.

Have a look at the equation for calculating the maximum acceptable diameter for a circle of confusion. It includes Enlargement factor and desired print resolution at a given viewing distance.

Humboldt Jim: Can we assume that a 1" sensor system can be stopped down to ƒ16, or even 22 without diffraction problems?

A desired resolution of 5 lp/mm (which is equivalent to 360dpi, taking into account the 30% loss of resolution imposed by a typical CMOS sensor's Bayer algorithm and AA filter), to support viewing distances as close as 10-inches (25cm), for a 23x enlargement factor (which is required to make an 8x12-inch print from a 1-inch sensor's uncropped capture - an enlargement factor that would require, at 360 dpi, an image resolution of 2880x4320 pixels, or 12.44 MP:

f-Number = 1/ 5 / 23 / 0.00135383 = 6.42

Thus, a one-inch, 12.44 MP sensor cannot deliver more than 5 lp/mm (360dpi) of resolution after enlargement to an 8x12-inch print when using f-Numbers larger than f/6.42.

A one inch sensor is still quite small, compared to a full frame or MF sensor.

Humboldt Jim: Can we assume that a 1" sensor system can be stopped down to ƒ16, or even 22 without diffraction problems?

The f-Number at which diffraction will begin to inhibit a desired print resolution (expressed in line pairs per millimeter for a viewing distance of 10 inches), at an anticipated enlargement factor can be calculated as follows:

A 1-inch sensor would have dimensions 13.2 x 8.8mm.

The possible f-Numbers at which diffraction would inhibit a desired print resolution at an anticipated viewing distance are endless, but here is an example combination:

jezsik: I hope there's a follow-up to this article. I already know how to bracket exposure, but that's just the raw material. What I struggle with is how to combine them properly. I can't help but feel that this is like a baking tutorial that focuses only on finding the best ingredients for a recipe.

Yeah! That's what I'm talkin' about! The one at bottom right (at your first link) is wonderfully natural, but without HDR, you couldn't have captured that with a single exposure. Nice example! Thanks!

CaseyComo: Call me old-fashioned, but I prefer the look of a single exposure. If the sky is too bright, expose for the shadows and use a grad ND filter.

Well, I'm almost with you, brother, but I say use HDR with even LESS saturation than the author's finished images. Unfortunately, we are in the minority. Walk into any Wal-Mart or Fry's Electronics, go to the rear of the store and check out how all of the television displays are adjusted: unnaturally saturated. Sometimes I think Joe Consumer has lost the ability to even see color. He wants to be slapped in the face with it.

Mike Davis: Sony seems to be making a serious attack on visible diffraction, with this camera.

The f-Number at which diffraction will *begin* to inhibit a desired print resolution in lp/mm, at anticipated enlargement factor can be calculated as follows:

If (notice the word "If") you desire to render subject detail in the final print at a resolution of 5 lp/mm (a fairly aggressive goal), making the largest possible prints at an unresampled, uncropped 29.3x enlargement factor (print size would be 15.2 x 10.1 inches at an image density of 360 dip), the largest f-Number that can be used without diffraction beginning to inhibit your 5 lp/mm resolution goal, would be...

1 / 5 / 29.3 / 0.00135383 = 5.04

I find it noteworthy that Sony chose not to include f/5.6 and larger f-numbers with this lens - given that it stops down no further than f/4.9.

Big sensor and fast lens = less vulnerable to diffraction.

Mike

" but educated users should be able to decide" - and therein lies the deficiency I was hoping they had addressed.

Mike Davis: Sony seems to be making a serious attack on visible diffraction, with this camera.

The f-Number at which diffraction will *begin* to inhibit a desired print resolution in lp/mm, at anticipated enlargement factor can be calculated as follows:

If (notice the word "If") you desire to render subject detail in the final print at a resolution of 5 lp/mm (a fairly aggressive goal), making the largest possible prints at an unresampled, uncropped 29.3x enlargement factor (print size would be 15.2 x 10.1 inches at an image density of 360 dip), the largest f-Number that can be used without diffraction beginning to inhibit your 5 lp/mm resolution goal, would be...

1 / 5 / 29.3 / 0.00135383 = 5.04

I find it noteworthy that Sony chose not to include f/5.6 and larger f-numbers with this lens - given that it stops down no further than f/4.9.

Big sensor and fast lens = less vulnerable to diffraction.

Mike

Ooops! Never mind!

I just saw some sample photos taken at f-Numbers greater than f/4.9.

Sony seems to be making a serious attack on visible diffraction, with this camera.

The f-Number at which diffraction will *begin* to inhibit a desired print resolution in lp/mm, at anticipated enlargement factor can be calculated as follows:

If (notice the word "If") you desire to render subject detail in the final print at a resolution of 5 lp/mm (a fairly aggressive goal), making the largest possible prints at an unresampled, uncropped 29.3x enlargement factor (print size would be 15.2 x 10.1 inches at an image density of 360 dip), the largest f-Number that can be used without diffraction beginning to inhibit your 5 lp/mm resolution goal, would be...

1 / 5 / 29.3 / 0.00135383 = 5.04

I find it noteworthy that Sony chose not to include f/5.6 and larger f-numbers with this lens - given that it stops down no further than f/4.9.

Big sensor and fast lens = less vulnerable to diffraction.

Mike

Direct link |
Posted on Jun 11, 2012 at 18:36 UTC
as 14th comment
| 5 replies

Salvatore Castrovinci: Very good alternative..... I am waiting the price...... I hope not so exagerate as the First SD1.......

About the viewfinder I can should use, for the DP1m, the OVF of the old DP1.... is not so different as field image....... or not ?

Cheers

Salvatore

I would think that any viewfinder made for a 28mm lens on a fullframe camera would work well with either the DP1 or the DP1 Merrill, given that they both have 28mm-equivalent lenses.

For example: The Voigtlander 28mm Metal Brightline Viewfinder

Mk7: Starwolfy said: That is also the reason why they will fire many people. They need to make the company operational costs to be ligther. Any CEO would do the same in such case.

That's what happens when CEOs run companies, not workers. Want to cut costs? How about cutting your own multi-million dollar salary/stock portfolio/private jet/bloated personal spending account, Mr CEO? If your solution to problems is always layoffs and firings, who's going to have money to buy your products?

The people of India and China are buying the stuff we used to buy. Four guys in a 400 square foot apartment in Bangalor might split the cost four ways to buy a microwave oven, but they are buying the microwave oven just the same - and the blender, and the HDTV, and you name it. U.S. manufacturers (the few that are left) don't need U.S. consumers. The outsourcing of jobs will continue until we're willing to study as hard, work as hard and and accept the lower standard of living the labor force overseas has accepted. Hear that scratching sound at your office window? That's hundreds of educated, legal immigrants trying to get your job with a willingness to work harder for less compensation.

Sergey S: Why is this press-release so similar to this one http://www.dpreview.com/news/2011/10/27/leicaS30mmf2p8 ? Chinese company can't write own press-release?

English isn't your native tongue? No problem - just plagiarize a German!

tulo: i never managed to understand the use of "toe-in"/converging optical axis for close focusing like in the Sony TD10. it is the OA of the viewer's eyes that are supposed to converge, giving a sense of depth - not the OA of imaging device, is it?

Continued from above.

When shooting with the lenses kept parallel, no doubling occurs at any plane along the z-axis, but the absence of doubled subjects goes completely unnoticed by the audience, just as the presence of doubling goes completely unnoticed in real life. And best of all, the audience has the FREEDOM to explore every scene at any point of along the z-axis they choose. Just as in real life, with two people standing side by side in a forest, one can be converging his eyes on the bark of a tree that's in the foreground while the other is simultaneously examining a distant meadow, seen through a gap in the trees. That's the natural experience that an audience should have when watching a 3D movie - with everyone looking where they choose to look - and it can only be had by shooting with parallel lens axes.

He looks deservedly smug...

For still shots, I'd rather use my Bogen/Manfrotto 3048 and a step ladder to get my camera to a height of 11 feet.

ISO 409,600 is eight stops faster than ISO 1600.

Fairground rides: 1/250 sec. @ f/16

Night street scene: 1/200 sec. @ f/16

Interior by candlelight: 1/60 sec. @ f/16

Landscapes by full moon: 1/2 sec. @ f/16

Trite, but true: I LOVE this!

Sadly, it took 2nd place in this challenge.

Regarding the excellent demo of diffraction's impact at various f-stops, on page 25 of this review, where is the photo showing what could have been accomplished using Photoshop ACR sharpening against an f/4 RAW file?

I would very much like to compare sharpening of the f/4 RAW file to sharpening of the f/22 RAW file. Surely, a silk purse made from silk would be more attractive than a silk purse made from a pig's ear.

Link to page 25 of this review: http://www.dpreview.com/reviews/nikon-d800-d800e/25

Mike

Humboldt Jim: Can we assume that a 1" sensor system can be stopped down to ƒ16, or even 22 without diffraction problems?

Using the example I've given above, if you're willing to assume that no one will view your prints at distances less than 20 inches (instead of 10 inches), you can double the calculated f-Number, stopping down to f/12.84 - delivering an effective 2.5 lp/mm at 20 inches that will appear every bit as detailed as a 5 lp/mm print at 10 inches.

Please note that there are only two variables in the formula for calculating the f-Number at which diffraction will begin to inhibit a desired print resolution (expressed in lp/mm for a 10-inch viewing distance): Enlargement factor and desired print resolution at a given viewing distance.

Somehow, discussions of resolution (or "sharpness") almost always neglect these critical variables.

Have a look at the equation for calculating the maximum acceptable diameter for a circle of confusion. It includes Enlargement factor and desired print resolution at a given viewing distance.

http://en.wikipedia.org/wiki/Circle_of_confusion

Humboldt Jim: Can we assume that a 1" sensor system can be stopped down to ƒ16, or even 22 without diffraction problems?

A desired resolution of 5 lp/mm (which is equivalent to 360dpi, taking into account the 30% loss of resolution imposed by a typical CMOS sensor's Bayer algorithm and AA filter), to support viewing distances as close as 10-inches (25cm), for a 23x enlargement factor (which is required to make an 8x12-inch print from a 1-inch sensor's uncropped capture - an enlargement factor that would require, at 360 dpi, an image resolution of 2880x4320 pixels, or 12.44 MP:

f-Number = 1/ 5 / 23 / 0.00135383 = 6.42

Thus, a one-inch, 12.44 MP sensor cannot deliver more than 5 lp/mm (360dpi) of resolution after enlargement to an 8x12-inch print when using f-Numbers larger than f/6.42.

A one inch sensor is still quite small, compared to a full frame or MF sensor.

Continued below...

Humboldt Jim: Can we assume that a 1" sensor system can be stopped down to ƒ16, or even 22 without diffraction problems?

The f-Number at which diffraction will begin to inhibit a desired print resolution (expressed in line pairs per millimeter for a viewing distance of 10 inches), at an anticipated enlargement factor can be calculated as follows:

f-Number = 1 / desired print resolution / anticipated enlargement factor / 0.00135383

A 1-inch sensor would have dimensions 13.2 x 8.8mm.

The possible f-Numbers at which diffraction would inhibit a desired print resolution at an anticipated viewing distance are endless, but here is an example combination:

Continued below...

If this catches on, Facebook will have to buy a lot more hard drives.

jezsik: I hope there's a follow-up to this article. I already know how to bracket exposure, but that's just the raw material. What I struggle with is how to combine them properly. I can't help but feel that this is like a baking tutorial that focuses only on finding the best ingredients for a recipe.

Yeah! That's what I'm talkin' about! The one at bottom right (at your first link) is wonderfully natural, but without HDR, you couldn't have captured that with a single exposure. Nice example! Thanks!

CaseyComo: Call me old-fashioned, but I prefer the look of a single exposure. If the sky is too bright, expose for the shadows and use a grad ND filter.

Well, I'm almost with you, brother, but I say use HDR with even LESS saturation than the author's finished images. Unfortunately, we are in the minority. Walk into any Wal-Mart or Fry's Electronics, go to the rear of the store and check out how all of the television displays are adjusted: unnaturally saturated. Sometimes I think Joe Consumer has lost the ability to even see color. He wants to be slapped in the face with it.

Mike Davis: Sony seems to be making a serious attack on visible diffraction, with this camera.

The f-Number at which diffraction will *begin* to inhibit a desired print resolution in lp/mm, at anticipated enlargement factor can be calculated as follows:

f-Number = 1 / desired print resolution / enlargement factor / 0.00135383

If (notice the word "If") you desire to render subject detail in the final print at a resolution of 5 lp/mm (a fairly aggressive goal), making the largest possible prints at an unresampled, uncropped 29.3x enlargement factor (print size would be 15.2 x 10.1 inches at an image density of 360 dip), the largest f-Number that can be used without diffraction beginning to inhibit your 5 lp/mm resolution goal, would be...

1 / 5 / 29.3 / 0.00135383 = 5.04

I find it noteworthy that Sony chose not to include f/5.6 and larger f-numbers with this lens - given that it stops down no further than f/4.9.

Big sensor and fast lens = less vulnerable to diffraction.

Mike

" but educated users should be able to decide" - and therein lies the deficiency I was hoping they had addressed.

Mike Davis: Sony seems to be making a serious attack on visible diffraction, with this camera.

The f-Number at which diffraction will *begin* to inhibit a desired print resolution in lp/mm, at anticipated enlargement factor can be calculated as follows:

f-Number = 1 / desired print resolution / enlargement factor / 0.00135383

If (notice the word "If") you desire to render subject detail in the final print at a resolution of 5 lp/mm (a fairly aggressive goal), making the largest possible prints at an unresampled, uncropped 29.3x enlargement factor (print size would be 15.2 x 10.1 inches at an image density of 360 dip), the largest f-Number that can be used without diffraction beginning to inhibit your 5 lp/mm resolution goal, would be...

1 / 5 / 29.3 / 0.00135383 = 5.04

I find it noteworthy that Sony chose not to include f/5.6 and larger f-numbers with this lens - given that it stops down no further than f/4.9.

Big sensor and fast lens = less vulnerable to diffraction.

Mike

Ooops! Never mind!

I just saw some sample photos taken at f-Numbers greater than f/4.9.

Wishful thinking...

Mike

Sony seems to be making a serious attack on visible diffraction, with this camera.

The f-Number at which diffraction will *begin* to inhibit a desired print resolution in lp/mm, at anticipated enlargement factor can be calculated as follows:

f-Number = 1 / desired print resolution / enlargement factor / 0.00135383

If (notice the word "If") you desire to render subject detail in the final print at a resolution of 5 lp/mm (a fairly aggressive goal), making the largest possible prints at an unresampled, uncropped 29.3x enlargement factor (print size would be 15.2 x 10.1 inches at an image density of 360 dip), the largest f-Number that can be used without diffraction beginning to inhibit your 5 lp/mm resolution goal, would be...

1 / 5 / 29.3 / 0.00135383 = 5.04

I find it noteworthy that Sony chose not to include f/5.6 and larger f-numbers with this lens - given that it stops down no further than f/4.9.

Big sensor and fast lens = less vulnerable to diffraction.

Mike

D1N0: for some sample's http://www.flickr.com/groups/sigmadp1/

6 LIKES and counting, on use of the word "bloodbath."

Salvatore Castrovinci: Very good alternative..... I am waiting the price...... I hope not so exagerate as the First SD1.......

About the viewfinder I can should use, for the DP1m, the OVF of the old DP1.... is not so different as field image....... or not ?

Cheers

Salvatore

I would think that any viewfinder made for a 28mm lens on a fullframe camera would work well with either the DP1 or the DP1 Merrill, given that they both have 28mm-equivalent lenses.

For example: The Voigtlander 28mm Metal Brightline Viewfinder

http://www.cameraquest.com/jpg6/VF%2028%20M%20B%201.jpg

http://www.cameraquest.com/jpg6/VF%2028%20M%20B%202.jpg

Mk7: Starwolfy said:

That is also the reason why they will fire many people. They need to make the company operational costs to be ligther.

Any CEO would do the same in such case.

That's what happens when CEOs run companies, not workers. Want to cut costs? How about cutting your own multi-million dollar salary/stock portfolio/private jet/bloated personal spending account, Mr CEO?

If your solution to problems is always layoffs and firings, who's going to have money to buy your products?

The people of India and China are buying the stuff we used to buy. Four guys in a 400 square foot apartment in Bangalor might split the cost four ways to buy a microwave oven, but they are buying the microwave oven just the same - and the blender, and the HDTV, and you name it. U.S. manufacturers (the few that are left) don't need U.S. consumers. The outsourcing of jobs will continue until we're willing to study as hard, work as hard and and accept the lower standard of living the labor force overseas has accepted. Hear that scratching sound at your office window? That's hundreds of educated, legal immigrants trying to get your job with a willingness to work harder for less compensation.

Sergey S: Why is this press-release so similar to this one http://www.dpreview.com/news/2011/10/27/leicaS30mmf2p8 ?

Chinese company can't write own press-release?

English isn't your native tongue? No problem - just plagiarize a German!

tulo: i never managed to understand the use of "toe-in"/converging optical axis for close focusing like in the Sony TD10. it is the OA of the viewer's eyes that are supposed to converge, giving a sense of depth - not the OA of imaging device, is it?

Continued from above.

When shooting with the lenses kept parallel, no doubling occurs at any plane along the z-axis, but the absence of doubled subjects goes completely unnoticed by the audience, just as the presence of doubling goes completely unnoticed in real life. And best of all, the audience has the FREEDOM to explore every scene at any point of along the z-axis they choose. Just as in real life, with two people standing side by side in a forest, one can be converging his eyes on the bark of a tree that's in the foreground while the other is simultaneously examining a distant meadow, seen through a gap in the trees. That's the natural experience that an audience should have when watching a 3D movie - with everyone looking where they choose to look - and it can only be had by shooting with parallel lens axes.

Mike